3.1.60 \(\int \frac {a+b \text {csch}^{-1}(c x)}{\sqrt {d+e x}} \, dx\) [60]

3.1.60.1 Optimal result
3.1.60.2 Mathematica [C] (verified)
3.1.60.3 Rubi [B] (warning: unable to verify)
3.1.60.4 Maple [C] (verified)
3.1.60.5 Fricas [F]
3.1.60.6 Sympy [F]
3.1.60.7 Maxima [F]
3.1.60.8 Giac [F]
3.1.60.9 Mupad [F(-1)]

3.1.60.1 Optimal result

Integrand size = 18, antiderivative size = 284 \[ \int \frac {a+b \text {csch}^{-1}(c x)}{\sqrt {d+e x}} \, dx=\frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e}+\frac {4 b c \sqrt {\frac {d+e x}{d+\frac {e}{\sqrt {-c^2}}}} \sqrt {1+c^2 x^2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right ),-\frac {2 \sqrt {-c^2} e}{c^2 d-\sqrt {-c^2} e}\right )}{\left (-c^2\right )^{3/2} \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {d+e x}}-\frac {4 b d \sqrt {\frac {\sqrt {-c^2} (d+e x)}{\sqrt {-c^2} d+e}} \sqrt {1+c^2 x^2} \operatorname {EllipticPi}\left (2,\arcsin \left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right ),\frac {2 e}{\sqrt {-c^2} d+e}\right )}{c e \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {d+e x}} \]

output
2*(a+b*arccsch(c*x))*(e*x+d)^(1/2)/e+4*b*c*EllipticF(1/2*(1-x*(-c^2)^(1/2) 
)^(1/2)*2^(1/2),(-2*e*(-c^2)^(1/2)/(c^2*d-e*(-c^2)^(1/2)))^(1/2))*(c^2*x^2 
+1)^(1/2)*((e*x+d)/(d+e/(-c^2)^(1/2)))^(1/2)/(-c^2)^(3/2)/x/(1+1/c^2/x^2)^ 
(1/2)/(e*x+d)^(1/2)-4*b*d*EllipticPi(1/2*(1-x*(-c^2)^(1/2))^(1/2)*2^(1/2), 
2,2^(1/2)*(e/(d*(-c^2)^(1/2)+e))^(1/2))*(c^2*x^2+1)^(1/2)*((e*x+d)*(-c^2)^ 
(1/2)/(d*(-c^2)^(1/2)+e))^(1/2)/c/e/x/(1+1/c^2/x^2)^(1/2)/(e*x+d)^(1/2)
 
3.1.60.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 8.45 (sec) , antiderivative size = 307, normalized size of antiderivative = 1.08 \[ \int \frac {a+b \text {csch}^{-1}(c x)}{\sqrt {d+e x}} \, dx=\frac {2 \left (a e (d+e x)-\frac {b \left (e+\frac {d}{x}\right ) \left (-c e x \text {csch}^{-1}(c x)+\frac {\sqrt {2} \sqrt {1+i c x} \left (-e^2 (i+c x) \sqrt {\frac {c (d+e x)}{c d-i e}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {-\frac {e (i+c x)}{c d-i e}}\right ),\frac {i c d+e}{2 e}\right )+c d (i c d+e) \sqrt {-\frac {e (i+c x)}{c d-i e}} \sqrt {\frac {c e (i+c x) (d+e x)}{(i c d+e)^2}} \operatorname {EllipticPi}\left (1+\frac {i c d}{e},\arcsin \left (\sqrt {-\frac {e (i+c x)}{c d-i e}}\right ),\frac {i c d+e}{2 e}\right )\right )}{\sqrt {1+\frac {1}{c^2 x^2}} \sqrt {-\frac {e (i+c x)}{c d-i e}} (c d+c e x)}\right )}{c}\right )}{e^2 \sqrt {d+e x}} \]

input
Integrate[(a + b*ArcCsch[c*x])/Sqrt[d + e*x],x]
 
output
(2*(a*e*(d + e*x) - (b*(e + d/x)*(-(c*e*x*ArcCsch[c*x]) + (Sqrt[2]*Sqrt[1 
+ I*c*x]*(-(e^2*(I + c*x)*Sqrt[(c*(d + e*x))/(c*d - I*e)]*EllipticF[ArcSin 
[Sqrt[-((e*(I + c*x))/(c*d - I*e))]], (I*c*d + e)/(2*e)]) + c*d*(I*c*d + e 
)*Sqrt[-((e*(I + c*x))/(c*d - I*e))]*Sqrt[(c*e*(I + c*x)*(d + e*x))/(I*c*d 
 + e)^2]*EllipticPi[1 + (I*c*d)/e, ArcSin[Sqrt[-((e*(I + c*x))/(c*d - I*e) 
)]], (I*c*d + e)/(2*e)]))/(Sqrt[1 + 1/(c^2*x^2)]*Sqrt[-((e*(I + c*x))/(c*d 
 - I*e))]*(c*d + c*e*x))))/c))/(e^2*Sqrt[d + e*x])
 
3.1.60.3 Rubi [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(737\) vs. \(2(284)=568\).

Time = 1.10 (sec) , antiderivative size = 737, normalized size of antiderivative = 2.60, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6844, 1898, 630, 1656, 1416, 2222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \text {csch}^{-1}(c x)}{\sqrt {d+e x}} \, dx\)

\(\Big \downarrow \) 6844

\(\displaystyle \frac {2 b \int \frac {\sqrt {d+e x}}{\sqrt {1+\frac {1}{c^2 x^2}} x^2}dx}{c e}+\frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e}\)

\(\Big \downarrow \) 1898

\(\displaystyle \frac {2 b \sqrt {\frac {1}{c^2}+x^2} \int \frac {\sqrt {d+e x}}{x \sqrt {x^2+\frac {1}{c^2}}}dx}{c e x \sqrt {\frac {1}{c^2 x^2}+1}}+\frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e}\)

\(\Big \downarrow \) 630

\(\displaystyle \frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e}-\frac {4 b \sqrt {\frac {1}{c^2}+x^2} \int -\frac {d+e x}{e x \sqrt {\frac {d^2}{e^2}-\frac {2 (d+e x) d}{e^2}+\frac {(d+e x)^2}{e^2}+\frac {1}{c^2}}}d\sqrt {d+e x}}{c e x \sqrt {\frac {1}{c^2 x^2}+1}}\)

\(\Big \downarrow \) 1656

\(\displaystyle \frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e}-\frac {4 b \sqrt {\frac {1}{c^2}+x^2} \left (\frac {\sqrt {c^2 d^2+e^2} \left (c d-\sqrt {c^2 d^2+e^2}\right ) \int \frac {1}{\sqrt {\frac {d^2}{e^2}-\frac {2 (d+e x) d}{e^2}+\frac {(d+e x)^2}{e^2}+\frac {1}{c^2}}}d\sqrt {d+e x}}{e^2}+\frac {d \left (c^2 d^2+e^2\right ) \left (1-\frac {c d}{\sqrt {c^2 d^2+e^2}}\right ) \int -\frac {\frac {c (d+e x)}{\sqrt {c^2 d^2+e^2}}+1}{e x \sqrt {\frac {d^2}{e^2}-\frac {2 (d+e x) d}{e^2}+\frac {(d+e x)^2}{e^2}+\frac {1}{c^2}}}d\sqrt {d+e x}}{e^2}\right )}{c e x \sqrt {\frac {1}{c^2 x^2}+1}}\)

\(\Big \downarrow \) 1416

\(\displaystyle \frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e}-\frac {4 b \sqrt {\frac {1}{c^2}+x^2} \left (\frac {d \left (c^2 d^2+e^2\right ) \left (1-\frac {c d}{\sqrt {c^2 d^2+e^2}}\right ) \int -\frac {\frac {c (d+e x)}{\sqrt {c^2 d^2+e^2}}+1}{e x \sqrt {\frac {d^2}{e^2}-\frac {2 (d+e x) d}{e^2}+\frac {(d+e x)^2}{e^2}+\frac {1}{c^2}}}d\sqrt {d+e x}}{e^2}+\frac {\left (c^2 d^2+e^2\right )^{3/4} \left (c d-\sqrt {c^2 d^2+e^2}\right ) \left (\frac {c (d+e x)}{\sqrt {c^2 d^2+e^2}}+1\right ) \sqrt {\frac {\frac {1}{c^2}+\frac {d^2}{e^2}-\frac {2 d (d+e x)}{e^2}+\frac {(d+e x)^2}{e^2}}{\left (\frac {1}{c^2}+\frac {d^2}{e^2}\right ) \left (\frac {c (d+e x)}{\sqrt {c^2 d^2+e^2}}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt {c} \sqrt {d+e x}}{\sqrt [4]{c^2 d^2+e^2}}\right ),\frac {1}{2} \left (\frac {c d}{\sqrt {c^2 d^2+e^2}}+1\right )\right )}{2 \sqrt {c} e^2 \sqrt {\frac {1}{c^2}+\frac {d^2}{e^2}-\frac {2 d (d+e x)}{e^2}+\frac {(d+e x)^2}{e^2}}}\right )}{c e x \sqrt {\frac {1}{c^2 x^2}+1}}\)

\(\Big \downarrow \) 2222

\(\displaystyle \frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e}-\frac {4 b \sqrt {\frac {1}{c^2}+x^2} \left (\frac {d \left (c^2 d^2+e^2\right ) \left (1-\frac {c d}{\sqrt {c^2 d^2+e^2}}\right ) \left (\frac {\sqrt [4]{c^2 d^2+e^2} \left (1-\frac {c d}{\sqrt {c^2 d^2+e^2}}\right ) \left (\frac {c (d+e x)}{\sqrt {c^2 d^2+e^2}}+1\right ) \sqrt {\frac {\frac {1}{c^2}+\frac {d^2}{e^2}-\frac {2 d (d+e x)}{e^2}+\frac {(d+e x)^2}{e^2}}{\left (\frac {1}{c^2}+\frac {d^2}{e^2}\right ) \left (\frac {c (d+e x)}{\sqrt {c^2 d^2+e^2}}+1\right )^2}} \operatorname {EllipticPi}\left (\frac {\left (c d+\sqrt {c^2 d^2+e^2}\right )^2}{4 c d \sqrt {c^2 d^2+e^2}},2 \arctan \left (\frac {\sqrt {c} \sqrt {d+e x}}{\sqrt [4]{c^2 d^2+e^2}}\right ),\frac {\sqrt {c^2 d^2+e^2} d}{2 c \left (\frac {d^2}{e^2}+\frac {1}{c^2}\right ) e^2}+\frac {1}{2}\right )}{4 \sqrt {c} d \sqrt {\frac {1}{c^2}+\frac {d^2}{e^2}-\frac {2 d (d+e x)}{e^2}+\frac {(d+e x)^2}{e^2}}}+\frac {c \left (\frac {c d}{\sqrt {c^2 d^2+e^2}}+1\right ) \text {arctanh}\left (\frac {\sqrt {d+e x}}{c \sqrt {d} \sqrt {\frac {1}{c^2}+\frac {d^2}{e^2}-\frac {2 d (d+e x)}{e^2}+\frac {(d+e x)^2}{e^2}}}\right )}{2 \sqrt {d}}\right )}{e^2}+\frac {\left (c^2 d^2+e^2\right )^{3/4} \left (c d-\sqrt {c^2 d^2+e^2}\right ) \left (\frac {c (d+e x)}{\sqrt {c^2 d^2+e^2}}+1\right ) \sqrt {\frac {\frac {1}{c^2}+\frac {d^2}{e^2}-\frac {2 d (d+e x)}{e^2}+\frac {(d+e x)^2}{e^2}}{\left (\frac {1}{c^2}+\frac {d^2}{e^2}\right ) \left (\frac {c (d+e x)}{\sqrt {c^2 d^2+e^2}}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt {c} \sqrt {d+e x}}{\sqrt [4]{c^2 d^2+e^2}}\right ),\frac {1}{2} \left (\frac {c d}{\sqrt {c^2 d^2+e^2}}+1\right )\right )}{2 \sqrt {c} e^2 \sqrt {\frac {1}{c^2}+\frac {d^2}{e^2}-\frac {2 d (d+e x)}{e^2}+\frac {(d+e x)^2}{e^2}}}\right )}{c e x \sqrt {\frac {1}{c^2 x^2}+1}}\)

input
Int[(a + b*ArcCsch[c*x])/Sqrt[d + e*x],x]
 
output
(2*Sqrt[d + e*x]*(a + b*ArcCsch[c*x]))/e - (4*b*Sqrt[c^(-2) + x^2]*(((c^2* 
d^2 + e^2)^(3/4)*(c*d - Sqrt[c^2*d^2 + e^2])*(1 + (c*(d + e*x))/Sqrt[c^2*d 
^2 + e^2])*Sqrt[(c^(-2) + d^2/e^2 - (2*d*(d + e*x))/e^2 + (d + e*x)^2/e^2) 
/((c^(-2) + d^2/e^2)*(1 + (c*(d + e*x))/Sqrt[c^2*d^2 + e^2])^2)]*EllipticF 
[2*ArcTan[(Sqrt[c]*Sqrt[d + e*x])/(c^2*d^2 + e^2)^(1/4)], (1 + (c*d)/Sqrt[ 
c^2*d^2 + e^2])/2])/(2*Sqrt[c]*e^2*Sqrt[c^(-2) + d^2/e^2 - (2*d*(d + e*x)) 
/e^2 + (d + e*x)^2/e^2]) + (d*(c^2*d^2 + e^2)*(1 - (c*d)/Sqrt[c^2*d^2 + e^ 
2])*((c*(1 + (c*d)/Sqrt[c^2*d^2 + e^2])*ArcTanh[Sqrt[d + e*x]/(c*Sqrt[d]*S 
qrt[c^(-2) + d^2/e^2 - (2*d*(d + e*x))/e^2 + (d + e*x)^2/e^2])])/(2*Sqrt[d 
]) + ((c^2*d^2 + e^2)^(1/4)*(1 - (c*d)/Sqrt[c^2*d^2 + e^2])*(1 + (c*(d + e 
*x))/Sqrt[c^2*d^2 + e^2])*Sqrt[(c^(-2) + d^2/e^2 - (2*d*(d + e*x))/e^2 + ( 
d + e*x)^2/e^2)/((c^(-2) + d^2/e^2)*(1 + (c*(d + e*x))/Sqrt[c^2*d^2 + e^2] 
)^2)]*EllipticPi[(c*d + Sqrt[c^2*d^2 + e^2])^2/(4*c*d*Sqrt[c^2*d^2 + e^2]) 
, 2*ArcTan[(Sqrt[c]*Sqrt[d + e*x])/(c^2*d^2 + e^2)^(1/4)], 1/2 + (d*Sqrt[c 
^2*d^2 + e^2])/(2*c*(c^(-2) + d^2/e^2)*e^2)])/(4*Sqrt[c]*d*Sqrt[c^(-2) + d 
^2/e^2 - (2*d*(d + e*x))/e^2 + (d + e*x)^2/e^2])))/e^2))/(c*e*Sqrt[1 + 1/( 
c^2*x^2)]*x)
 

3.1.60.3.1 Defintions of rubi rules used

rule 630
Int[Sqrt[(c_) + (d_.)*(x_)]/((x_)*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> 
Simp[-2   Subst[Int[x^2/((c - x^2)*Sqrt[(b*c^2 + a*d^2)/d^2 - 2*b*c*(x^2/d^ 
2) + b*(x^4/d^2)]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d}, x] && 
PosQ[b/a]
 

rule 1416
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c 
/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/ 
(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c)) 
], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]
 

rule 1656
Int[(x_)^2/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]) 
, x_Symbol] :> With[{q = Rt[c/a, 2]}, Simp[(-a)*((e + d*q)/(c*d^2 - a*e^2)) 
   Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Simp[a*d*((e + d*q)/(c*d^2 - a*e 
^2))   Int[(1 + q*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x]] /; Fr 
eeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a] && NeQ[c*d^2 - 
a*e^2, 0]
 

rule 1898
Int[(x_)^(m_.)*((a_.) + (c_.)*(x_)^(mn2_.))^(p_)*((d_) + (e_.)*(x_)^(n_.))^ 
(q_.), x_Symbol] :> Simp[x^(2*n*FracPart[p])*((a + c/x^(2*n))^FracPart[p]/( 
c + a*x^(2*n))^FracPart[p])   Int[x^(m - 2*n*p)*(d + e*x^n)^q*(c + a*x^(2*n 
))^p, x], x] /; FreeQ[{a, c, d, e, m, n, p, q}, x] && EqQ[mn2, -2*n] &&  !I 
ntegerQ[p] &&  !IntegerQ[q] && PosQ[n]
 

rule 2222
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + 
 (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[B/A, 2]}, Simp[(-(B*d - A*e))*(A 
rcTanh[Rt[b - c*(d/e) - a*(e/d), 2]*(x/Sqrt[a + b*x^2 + c*x^4])]/(2*d*e*Rt[ 
b - c*(d/e) - a*(e/d), 2])), x] + Simp[(B*d + A*e)*(1 + q^2*x^2)*(Sqrt[(a + 
 b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/(4*d*e*q*Sqrt[a + b*x^2 + c*x^4]))*Ell 
ipticPi[-(e - d*q^2)^2/(4*d*e*q^2), 2*ArcTan[q*x], 1/2 - b/(4*a*q^2)], x]] 
/; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a] && 
 EqQ[c*A^2 - a*B^2, 0] && PosQ[B/A] && NegQ[-b + c*(d/e) + a*(e/d)]
 

rule 6844
Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))*((d_.) + (e_.)*(x_))^(m_.), x_Symbo 
l] :> Simp[(d + e*x)^(m + 1)*((a + b*ArcCsch[c*x])/(e*(m + 1))), x] + Simp[ 
b/(c*e*(m + 1))   Int[(d + e*x)^(m + 1)/(x^2*Sqrt[1 + 1/(c^2*x^2)]), x], x] 
 /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[m, -1]
 
3.1.60.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 5.38 (sec) , antiderivative size = 395, normalized size of antiderivative = 1.39

method result size
derivativedivides \(\frac {2 \sqrt {e x +d}\, a +2 b \left (\sqrt {e x +d}\, \operatorname {arccsch}\left (c x \right )+\frac {2 \sqrt {-\frac {i c e \left (e x +d \right )+c^{2} d \left (e x +d \right )-c^{2} d^{2}-e^{2}}{c^{2} d^{2}+e^{2}}}\, \sqrt {\frac {i c e \left (e x +d \right )-c^{2} d \left (e x +d \right )+c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}}\, \left (\operatorname {EllipticF}\left (\sqrt {e x +d}\, \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}, \sqrt {-\frac {-c^{2} d^{2}+2 i c d e +e^{2}}{c^{2} d^{2}+e^{2}}}\right )-\operatorname {EllipticPi}\left (\sqrt {e x +d}\, \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}, \frac {c^{2} d^{2}+e^{2}}{\left (c d +i e \right ) c d}, \frac {\sqrt {-\frac {\left (-c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}{\sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}\right )\right )}{c \sqrt {\frac {c^{2} \left (e x +d \right )^{2}-2 c^{2} d \left (e x +d \right )+c^{2} d^{2}+e^{2}}{c^{2} e^{2} x^{2}}}\, x \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}\right )}{e}\) \(395\)
default \(\frac {2 \sqrt {e x +d}\, a +2 b \left (\sqrt {e x +d}\, \operatorname {arccsch}\left (c x \right )+\frac {2 \sqrt {-\frac {i c e \left (e x +d \right )+c^{2} d \left (e x +d \right )-c^{2} d^{2}-e^{2}}{c^{2} d^{2}+e^{2}}}\, \sqrt {\frac {i c e \left (e x +d \right )-c^{2} d \left (e x +d \right )+c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}}\, \left (\operatorname {EllipticF}\left (\sqrt {e x +d}\, \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}, \sqrt {-\frac {-c^{2} d^{2}+2 i c d e +e^{2}}{c^{2} d^{2}+e^{2}}}\right )-\operatorname {EllipticPi}\left (\sqrt {e x +d}\, \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}, \frac {c^{2} d^{2}+e^{2}}{\left (c d +i e \right ) c d}, \frac {\sqrt {-\frac {\left (-c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}{\sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}\right )\right )}{c \sqrt {\frac {c^{2} \left (e x +d \right )^{2}-2 c^{2} d \left (e x +d \right )+c^{2} d^{2}+e^{2}}{c^{2} e^{2} x^{2}}}\, x \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}\right )}{e}\) \(395\)
parts \(\frac {2 a \sqrt {e x +d}}{e}+\frac {2 b \left (\sqrt {e x +d}\, \operatorname {arccsch}\left (c x \right )+\frac {2 \sqrt {-\frac {i c e \left (e x +d \right )+c^{2} d \left (e x +d \right )-c^{2} d^{2}-e^{2}}{c^{2} d^{2}+e^{2}}}\, \sqrt {\frac {i c e \left (e x +d \right )-c^{2} d \left (e x +d \right )+c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}}\, \left (\operatorname {EllipticF}\left (\sqrt {e x +d}\, \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}, \sqrt {-\frac {-c^{2} d^{2}+2 i c d e +e^{2}}{c^{2} d^{2}+e^{2}}}\right )-\operatorname {EllipticPi}\left (\sqrt {e x +d}\, \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}, \frac {c^{2} d^{2}+e^{2}}{\left (c d +i e \right ) c d}, \frac {\sqrt {-\frac {\left (-c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}{\sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}\right )\right )}{c \sqrt {\frac {c^{2} \left (e x +d \right )^{2}-2 c^{2} d \left (e x +d \right )+c^{2} d^{2}+e^{2}}{c^{2} e^{2} x^{2}}}\, x \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}\right )}{e}\) \(398\)

input
int((a+b*arccsch(c*x))/(e*x+d)^(1/2),x,method=_RETURNVERBOSE)
 
output
2/e*((e*x+d)^(1/2)*a+b*((e*x+d)^(1/2)*arccsch(c*x)+2/c*(-(I*c*e*(e*x+d)+c^ 
2*d*(e*x+d)-c^2*d^2-e^2)/(c^2*d^2+e^2))^(1/2)*((I*c*e*(e*x+d)-c^2*d*(e*x+d 
)+c^2*d^2+e^2)/(c^2*d^2+e^2))^(1/2)*(EllipticF((e*x+d)^(1/2)*((c*d+I*e)*c/ 
(c^2*d^2+e^2))^(1/2),(-(2*I*c*d*e-c^2*d^2+e^2)/(c^2*d^2+e^2))^(1/2))-Ellip 
ticPi((e*x+d)^(1/2)*((c*d+I*e)*c/(c^2*d^2+e^2))^(1/2),1/(c*d+I*e)/c*(c^2*d 
^2+e^2)/d,(-(I*e-c*d)*c/(c^2*d^2+e^2))^(1/2)/((c*d+I*e)*c/(c^2*d^2+e^2))^( 
1/2)))/((c^2*(e*x+d)^2-2*c^2*d*(e*x+d)+c^2*d^2+e^2)/c^2/e^2/x^2)^(1/2)/x/( 
(c*d+I*e)*c/(c^2*d^2+e^2))^(1/2)))
 
3.1.60.5 Fricas [F]

\[ \int \frac {a+b \text {csch}^{-1}(c x)}{\sqrt {d+e x}} \, dx=\int { \frac {b \operatorname {arcsch}\left (c x\right ) + a}{\sqrt {e x + d}} \,d x } \]

input
integrate((a+b*arccsch(c*x))/(e*x+d)^(1/2),x, algorithm="fricas")
 
output
integral((b*arccsch(c*x) + a)/sqrt(e*x + d), x)
 
3.1.60.6 Sympy [F]

\[ \int \frac {a+b \text {csch}^{-1}(c x)}{\sqrt {d+e x}} \, dx=\int \frac {a + b \operatorname {acsch}{\left (c x \right )}}{\sqrt {d + e x}}\, dx \]

input
integrate((a+b*acsch(c*x))/(e*x+d)**(1/2),x)
 
output
Integral((a + b*acsch(c*x))/sqrt(d + e*x), x)
 
3.1.60.7 Maxima [F]

\[ \int \frac {a+b \text {csch}^{-1}(c x)}{\sqrt {d+e x}} \, dx=\int { \frac {b \operatorname {arcsch}\left (c x\right ) + a}{\sqrt {e x + d}} \,d x } \]

input
integrate((a+b*arccsch(c*x))/(e*x+d)^(1/2),x, algorithm="maxima")
 
output
b*(2*sqrt(e*x + d)*log(sqrt(c^2*x^2 + 1) + 1)/e + integrate(2*(c^2*e*x^2 + 
 c^2*d*x)/((c^2*e*x^2 + e)*sqrt(c^2*x^2 + 1)*sqrt(e*x + d) + (c^2*e*x^2 + 
e)*sqrt(e*x + d)), x) - integrate(((e*log(c) + 2*e)*c^2*x^2 + 2*c^2*d*x + 
e*log(c) + (c^2*e*x^2 + e)*log(x))/((c^2*e*x^2 + e)*sqrt(e*x + d)), x)) + 
2*sqrt(e*x + d)*a/e
 
3.1.60.8 Giac [F]

\[ \int \frac {a+b \text {csch}^{-1}(c x)}{\sqrt {d+e x}} \, dx=\int { \frac {b \operatorname {arcsch}\left (c x\right ) + a}{\sqrt {e x + d}} \,d x } \]

input
integrate((a+b*arccsch(c*x))/(e*x+d)^(1/2),x, algorithm="giac")
 
output
integrate((b*arccsch(c*x) + a)/sqrt(e*x + d), x)
 
3.1.60.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \text {csch}^{-1}(c x)}{\sqrt {d+e x}} \, dx=\int \frac {a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )}{\sqrt {d+e\,x}} \,d x \]

input
int((a + b*asinh(1/(c*x)))/(d + e*x)^(1/2),x)
 
output
int((a + b*asinh(1/(c*x)))/(d + e*x)^(1/2), x)